Luowei Zhou

1100 112th Ave NE, Bellevue, WA 98004, USA luoweizhou.github.io | zhouluoweiwest@gmail.com

RESEARCH INTERESTS

Computer vision and its relations to natural language and deep learning, with a focus on learning visual representation from multimodal supervision. Problems of interest include multimodal learning (particularly vision+language), video understanding, visual captioning, grounding, question answering, unsupervised representation learning, generative models, and non-local models (e.g., Transformers) etc.

WORK EXPERIENCE

Google Research, Brain Team	Bellevue, WA
Research Scientist	Oct. 2022 – present
Microsoft AI	Bellevue, WA
Senior Researcher	May 2020 – July 2022
University of Michigan, EECS	Ann Arbor, MI
Graduate Student Research Assistant (GSRA) with Dr. Jason J. Corso	May 2016 – April 2020
Microsoft Research	Redmond, WA
Research Intern with Dr. Hamid Palangi and Dr. Jianfeng Gao	May 2019 – Aug. 2019
Facebook AI Research	Menlo Park, CA
Research Intern with Dr. Marcus Rohrbach	May 2018 – Aug. 2018
Salesforce Research	Palo Alto, CA
Deep Learning Research Intern with Dr. Caiming Xiong	May 2017 – Aug. 2017

EDUCATION

University of Michigan	Ann Arbor, MI	
Ph.D. Degree in Robotics (Computer Vision)	Sept. 2015 – April 2020	
Master's Degree in Robotics (Computer Vision)	Sept. 2015 – April 2017	
Courses: Advanced Computer Vision, Natural Language Processing, Machine Learning, Optimization		
 Academics: Curriculum GPA: 4.00/4.00 		
Nanjing University	Nanjing, Jiangsu, China	
Bachelor's Degree in Automation	Sept. 2011 – June 2015	
Courses: Computer Vision, Artificial Intelligence, Advanced Programming Language, Data Structure		
 Academics: Overall GPA: 91.8/100, Major GPA: 93.0/100 		

DOCTORAL DISSERTATION

"Language-Driven Video Understanding". Dissertation Committee: Prof. Jason J. Corso (Chair), Prof. Joyce Y. Chai, Prof. David F. Fouhey, Prof. Rada Mihalcea, and Dr. Marcus Rohrbach.

SELECTED PUBLICATIONS AND PREPRINTS (2200+ citations on Google Scholar)

L. Yuan et al., "Florence: A New Foundation Model for Computer Vision", arXiv 2021.

Media coverages: Azure Blog, The Economist, Xuedong Huang's CVPR'2022 Keynote, and Synced.

Y. Xie, L. Zhou, X. Dai, L. Yuan, N. Bach, C. Liu, M. Zeng. "Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning", NeurIPS 2022. AR: 25%; h5: 278

Z. Wang, M. Li, R. Xu, L. Zhou et al., "Language Models with Image Descriptors are Strong Few-Shot Video-Language Learners", NeurIPS 2022. AR: 25%; h5: 278

J. Wang, D. Chen, Z. Wu, C. Luo, L. Zhou et al., "OmniVL: One Foundation Model for Image-Language and Video-Language Taskss", NeurIPS 2022. AR: 25%; h5: 278

H. You, L. Zhou, B. Xiao, N. Codella, Y. Cheng, R. Xu, SF Chang, L. Yuan, "MS-CLIP: Modality-Shared Contrastive Language-Image Pre-training", ECCV 2022. AR: 20%; h5: 186

Z. Jiang, T. Chen, X. Chen, Y. Cheng, L. Zhou, L. Yuan, A. Awadallah, Z. Wang., "Improve Few-Shot Transfer Learning with Low-Rank Decompose and Align", ECCV 2022. AR: 20%; h5: 186

M. Li, R. Xu, S. Wang, L. Zhou et al., "CLIP-Event: Connecting Text and Images with Event Structures", CVPR 2022. (oral) Code. AR: 4%; h5: 356

R. Wang, D. Chen, Z. Wu, Y. Chen, X. Dai, M. Liu, YG Jiang, L. Zhou, and L. Yuan, "BEVT: BERT Pretraining of Video Transformers", CVPR 2022. Code. AR: 25%; h5: 356

Y. Zhong, J. Yang, P. Zhang, C. Li, N. Codella, L. H. Li, L. Zhou, X. Dai, L. Yuan, Y. Li, J. Gao, "RegionCLIP: Region-based Language-Image Pretraining", CVPR 2022. AR: 25%; h5: 356

N. Louis, L. Zhou et al., "*Temporally guided articulated hand pose tracking in surgical videos*", International Journal of Computer Assisted Radiology and Surgery 2022. SCI IF: 3.42; h5: 49

<u>J. Lei</u>, <u>L. Li</u>, **L. Zhou**, Z. Gan, T. Berg, M. Bansal, and J. Liu, "*Less is More: ClipBERT for Video-and-Language Learning via Sparse Sampling*", CVPR 2021. (oral) <u>Code</u>. Best Student Paper Honorable Mention Award *AR: 0.1%; h5: 299*

M. Zhou, L. Zhou, S. Wang, Y. Cheng, L. Li, Z. Yu, and J. Liu, "UC2: Universal Cross-lingual Crossmodal Vision-and-Language Pretraining", CVPR 2021. Code. AR: 27%; h5: 299

L. Li et al., "VALUE: A Multi-Task Benchmark for Video-and-Language Understanding Evaluation", Track on Datasets & Benchmarks, NeurIPS 2021.

S. Wang, L. Zhou et al., "Cluster-Former: Clustering-based Sparse Transformer for Long-Range Dependency Encoding", Findings, ACL-IJCNLP 2021.

L. Zhou, H. Palangi, L. Zhang, H. Hu, J. J. Corso, and J. Gao, "Unified Vision-Language Pre-Training for Image Captioning and VQA", AAAI 2020. (spotlight)

Media coverages: MSR, VentureBeat, and KDnuggets. Code. AR: 20%; h5: 95

L. Zhou, Y. Kalantidis, X. Chen, J. J. Corso, and M. Rohrbach, "Grounded Video Description", CVPR 2019. (oral) Code. Dataset. AR: 5.6%; h5: 188

H. Huang, L. Zhou, W. Zhang, J. J. Corso, and C. Xu, "Dynamic Graph Modules for Modeling Object-Object Interactions in Activity Recognition", BMVC 2019. AR: 30%; h5: 42

L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong, "End-to-End Dense Video Captioning with Masked Transformer", CVPR 2018. (spotlight) Code. AR: 9%; h5: 158

L. Zhou, C. Xu, and J. J. Corso, "Towards Automatic Learning of Procedures from Web Instructional Videos", AAAI 2018. (oral) Code. Dataset. AR: 11%; h5: 56

L. Zhou, N. Louis, and J. J. Corso, "Weakly-Supervised Video Object Grounding from Text by Loss Weighting and Object Interaction", BMVC 2018. Code. Dataset. AR: 30%; h5: 42

L. Zhou et al., "Multi-agent Reinforcement Learning with Sparse Interactions by Negotiation and Knowledge Transfer", IEEE Transactions on Cybernetics 2017, 47 (5): 1238 - 1250. SCI IF: 7.38; h5: 73

PATENTS

Y. Zhou, L. Zhou, C. Xiong, and R. Socher, "Dense Video Captioning", US10542270B2.

HONORS AND AWARDS

Best Student Paper Honorable Mention (0.1%), CVPR 2021	2021
Outstanding Winner Awards (0.2%), Mathematical Contest in Modeling (MCM)	2014
Best Undergrad Thesis (Top 1), of Nanjing University and Jiangsu Province, China	2015
National Scholarship (1%), of Nanjing University	2012

OTHER INVITED TALKS

Facebook AI	Menlo Park, CA
Hosted by Dr. Yatharth Saraf	Nov. 2019
NVIDIA Research	Santa Clara, CA
Hosted by Dr. Jan Kautz	Nov. 2019
Salesforce Research	Palo Alto, CA
Hosted by Dr. Caiming Xiong	Nov. 2019
Amazon AI	Seattle, WA
Hosted by Dr. Joseph Tighe	Nov. 2019
Tencent AI Lab	Bellevue, WA

Hosted by Dr. Tong Zhang

NVIDIA AI Lab *Hosted by Dr. Sanja Fidler*

SAMSUNG AI Centre *Hosted by Dr. Afsaneh Fazly and Dr. Allan Jepson*

PROFESSIONAL ACTIVITIES

Organizer, CVPR 2020 and 2021 Challenge on ActivityNet-Entities Object Localization (<u>AEOL</u>), a guest task in the annual ActivityNet Workshop

Co-organizer, CVPR 2020 and 2021 Tutorial on Recent Advances in Vision-and-Language Research

Co-organizer, CVPR 2018 Workshop on Fine-grained Instructional Video Understanding (FIVER)

RESEARCH EXPERIENCE (open-source projects on <u>Github</u>)

Learning Contextualized Video Representation from Language Microsoft, Cloud and AI
 Conducting large-scale self-supervised training on video-and-language data (e.g., instructional videos and their subtitles) to automatically learn robust video and video-language representation.

• Using non-local models, esp. Efficient Transformers, for modeling video long-range dependencies.

Large-Scale Unified Vision-Language Pre-training Microsoft Research

Supervisors: Dr. Jianfeng Gao, Dr. Lei Zhang, and Dr. Hamid Palangi May 2019 – Nov. 2019

- Introduced a generic and unified framework for Vision-Language Pre-training (VLP). VLP is pretrained on millions of image-text pairs automatically mined from the web and fine-tuned for disparate downstream tasks including image captioning and VQA.
- Proposed to use two unsupervised learning objectives for VLP: bidirectional and sequence-tosequence (seq2seq) masked vision-language prediction.
- Thanks to our vision-language pre-training, both training speed and overall accuracy have been significantly improved on the downstream tasks compared to other model initialization methods.
- Set new SotA on COCO Captions (CIDEr 129), VQA 2.0 (overall 71) and Flickr30k Captions (CIDEr 67 vs previous SotA 62), all from a single model architecture.
- Current focuses: VLP on videos by leveraging a large amount of instructional video data and the associated ASR scripts. Multi-task learning of captioning, QA, and event proposal.

Grounded Video Description

Supervisors: Dr. Marcus Rohrbach, Dr. Yannis Kalantidis, and Dr. Xinlei Chen May 2018 – Dec. 2018

- Introduced a large-scale video description and grounding dataset, called <u>ActivityNet-Entities</u>, where we annotated noun phrases (& objects) from sentence descriptions in videos as spatial bounding boxes. ActivityNet-Entities contains over 158k labeled boxes for 52k video clips.
- Proposed a unified framework for video and image description, where a supervised grounding module dynamically detects objects in the scene and provides visual clues to the captioning module.

Toronto, Ontario, Canada Dec. 2018

Oct. 2019

Toronto, Ontario, Canada Dec. 2018/2020

Facebook AI Research

Set new SotA performance on video description and image description and demonstrated that our generated sentences are more explainable through grounding.

Fine-grained Instructional Video Understanding

Supervisor: Prof. Jason Corso

- Introduced YouCook2 dataset, which contains temporally localized recipe sentence annotations and bounding boxes for 2000 YouTube cooking videos.
- Tackled a series of problems related to instructional video understanding: i) event proposal (AAAI 2018), ii) dense video captioning (CVPR 2018), iii) weakly supervised object grounding from language description (BMVC 2018).
- *Event proposal*: Proposed an event proposal and sequential modeling network that can temporally localize procedure steps in web instructional videos and capture the temporal structure of the video.
- Dense video captioning: Caption generation for event proposals. See Page 4 for more details.
- Weakly supervised object grounding: Given a video and the corresponding description, localize the objects mentioned from the description in the video as bounding boxes. No box is given for training.

Dense-Captioning Events in Video and Temporal Action Proposal Salesforce Research

Supervisors: Dr. Caiming Xiong and Dr. Richard Socher

- May 2017 Aug. 2017
- Introduced a self-attention-based video captioning model and improved our previously proposed action/event proposal network with carefully-designed Temporal Convolutional Networks.
- Proposed to bridge event proposal and captioning by a differentiable visual mask and achieved stateof-the-art results on dense video captioning.

Text-conditional Visual Captioning with Guiding LSTM	University of Michigan	
Supervisor: Prof. Jason Corso	Mar. 2016 – Nov. 2016	
 Proposed an encoder-decoder image captioner though explicit text-conditional image guidance. 		
 Extended the work to video captioning by leveraging audio features for the extra guidance. 		
End-to-End Grasping with Deep Reinforcement Learning	University of Michigan	
Supervisor: Prof. Satinder Singh	Sept. 2015 – Apr. 2016	
• Applied state-of-the-art Deep RL algorithm named Deep Q-network (DQN) to robot grasping tasks.		
 Built an API between physics engine MuJoCo and the DQN module. 		
Research on Multi-Agent Reinforcement Learning with Sparse Interactions	Nanjing University	
Supervisors: Prof. Chunlin Chen, Dr. Pei Yang, and Prof. Yang Gao	Dec. 2014 – Jul. 2015	
 Introduced the concept of equilibrium into traditional sparse-interaction-based MARL algorithms 		
and proposed a knowledge transfer approach to initialize the joint-state Q table.		
• Applied the proposed algorithm in a real-world setting, i.e., our intelligent warehouse simulator.		
Multi-Robot Task Allocation and Path Planning in Dynamic Environments	Nanjing University	
Supervisor: Dr. Pei Yang	Nov. 2013 – Jul. 2014	
 Droposed a Palaneed Hauristic Machanism to balance task allocation in multiplication in multiplication. 	ti rahat avatama	

- Proposed a Balanced Heuristic Mechanism to balance task allocation in multi-robot systems.
- Built an intelligent warehouse simulator from scratch using C/OpenGL for the experiments.

Sept. 2016 – April 2020

University of Michigan

PROFICIENCY AND SKILLS

Technical Skills: PyTorch/Torch, Python, C/C++, Linux, Git, LaTeX, Matlab, Caffe, HTML, CSS, JS etc. *Languages:* English (proficient) and Mandarin (native)

REFERENCES

Prof. Jason Corso, Professor, University of Michigan, jjcorso@umich.edu

Prof. Chenliang Xu, Associate Professor, University of Rochester, chenliang.xu@rochester.edu

Dr. Hamid Palangi, Principal Researcher, Microsoft Research, hpalangi@microsoft.com

Dr. Marcus Rohrbach, Research Scientist, Facebook AI, mrf@fb.com

Dr. Yannis Kalantidis, Research Scientist, Naver Labs Europe, yannis.kalantidis@naverlabs.com